If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+7u-20=0
a = 3; b = 7; c = -20;
Δ = b2-4ac
Δ = 72-4·3·(-20)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-17}{2*3}=\frac{-24}{6} =-4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+17}{2*3}=\frac{10}{6} =1+2/3 $
| 38=-10+7a | | 90+11x-2+6x+7=180 | | 1.1=2y+10.5 | | 30x+15=105 | | 4y-2=3-y | | -1(2/3)=5k | | 11y-1=49 | | -12/3=5k | | (4)/(10)x-3x+(6)/(5)=(4)/(5) | | −1/3z=8/3 | | 1.9=4y+14.7 | | 25x-11=15x+19 | | 6.4=u | | 2n/5=-7/9 | | 16x-20=100 | | −13z=83 | | 2x=x-5+80 | | (x+3)/4=11 | | 2n=-7/9 | | 3a–8=a/2+2 | | 1.6=2y+10.8 | | 5x-3x=36-x | | -6b+12=36 | | 647x−142x+3=49x−4 | | 15x+5=22x | | 3(24)-29+8y+17=180 | | x+52+128=180 | | -4=-5x+6x | | .75+c+7=2.80 | | 4×(x×10=(4×x×10 | | g(0)=3(0)-10 | | 3x-6x=-6 |